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Abstract

Was the high inflation of the 1970s due to incomplete information about the
structure of the economy and the shocks (an honest mistake)? Or, to weak reaction
to inflation and/or excessive policy activism (a policy mistake)? We study this
question within the NNS model with policy commitment and imperfect information,
requiring that the model have satisfactory overall empirical performance during that
period. Under this requirement, we find that the model can replicate the behavior
of inflation in the 70s in the case of a very substantial productivity slowdown only if
the degree of imperfect information is very high and the policy response to inflation
is weak but sufficiently large to prevent indeterminacy.
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Introduction

The causes of the “great” inflation of the 1970s remain the subject of debate. While

there is widespread agreement that “loose” monetary policy played a major rule, there

is less agreement concerning the factors responsible for such policy. Some1 have argued

that looseness was a reflection of policy opportunism under discretion (see Ireland, 1999,

Sargent, 1999). Others that it was a reflection of — mostly unavoidable — policy

mistakes that resulted from the combination of bad luck and erroneous information

about the structure of the economy and the shocks (see Orphanides, 1999, Lansing,

2001). And, others that it was the result of inadequate concern for inflation, manifested

as a low weigh on inflation in the Henderson-McKibbin-Taylor rule (see Clarida, Gertler

and Gali, 2000).

The proponents of the first view use the time inconsistency model of Kydland and

Prescott, 1978, and Barro and Gordon, 1983 to claim that inflation was the product

of a policy inflation bias. According to this theory, in the absence of commitment,

monetary authorities systematically attempt to generate inflation surprises as a means

of exploiting the expectational Phillips curve and lowering unemployment. Rational

agents, though, recognize this incentive and adjust their inflation expectations accord-

ingly. In equilibrium, unemployment does not fall while inflation becomes inefficiently

high. Ireland, 1999, claims that the theory is consistent with the behavior of inflation

and unemployment in the US during the last four decades. Sargent, 1999, extends the

standard time inconsistency model by including a time–varying, perceived slope of the

Phillips curve and reaches a similar conclusion.

The proponents of the “honest mistake, unavoidable” view recognize too that the pur-

sued monetary policies proved to be much more inflationary than the FED might have

anticipated. They attribute this discrepancy to a variety of factors relating to erroneous

information about the structure of the economy. One is that the FED was the “victim”

of conventional macroeconomic wisdom of the time that claimed the existence of a stable,

permanent tradeoff between inflation and unemployment (De Long, 1997). Another is

that while the FED may have not believed in the existence of a long term trade off it

faced an unobservable, large, negative shift in productivity growth. It has been claimed

that even without any significant differences in pre and post Volcker reaction to inflation

developments, the large unobserved slowdown in productivity would have led to excep-

tionally loose monetary policy as the FED operated along what it perceived to be its

“normal” short run Phillips curve (Orphanides, 1999, 2001).
1See Lansing, 2000, for a survey of several theories.
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Finally, Clarida, Gali and Gertler, 2000, have argued that the adverse supply shock would

not have been sufficient to generate on its own the inflation rates observed during the

1970s. In their view, the great inflation was due to the fact that, during that period, the

Federal Reserve pursued a policy that accommodated inflation and induced instability

in the economy by lowering real interest rates when expected inflation increased.

A few attempts have been made to examine whether the behavior of inflation during

that period can be accounted for by standard macroeconomic models (Cristiano and

Gust, 1999, Ireland, 1999, Lansing, 2001, Orphanides and Williams, 2002). With the

exception of Christiano and Gust, 1999,(who do not deal with the role of imperfect

information, though) the models employed tend to consist of a small number of reduced

form equations that are estimated or simulated and then used to generate inflation paths.

The limitations of such an approach are well known.

We employ the standard New Neoclassical Synthesis (NNS) model. We abstract from

issues of time inconsistency by assuming that the policymakers commit to following

a standard Henderson-McKibbin-Taylor (henceforth, HMT) rule. We also pay special

attention to specifications that allow the model to have a unique equilibrium. While

Clarida, Gali and Gertler, 2000, claim that the high inflation in the 70s was due to FED

policies that created indeterminacy (while Orphanides, 2001, argues that this was not

the case) we think we should first exhaust the possibilities offered by a model with a

determinate equilibrium before investigating alternatives.

The main question we address is whether and under what conditions the NNS model

with policy commitment can replicate the evolution of inflation and of other important

macroeconomic variables following a severe, persistent slowdown in the rate of produc-

tivity growth. And if yes, whether the model also meets additional fitness criteria. The

importance of evaluating the ability of the model to account for the 1970s on the basis

of a larger set of variables and not just inflation cannot be underestimated. In principle,

focusing on a single variable offers too little discipline.

We first examine whether the model can generate a “great inflation” under the assump-

tion that the HMT policy rule pursued at the time did not differ from that commonly

attributed to the ”Volcker- Greenspan” FED (see Clarida, Gali and Gertler, 2000, Or-

phanides, 2001)). We find that this can be the case if the productivity slowdown is

very large and there also exists a very high degree of imperfect information2. Nonethe-

less, while replicating inflation, the model fails to generate sufficient volatility in key

macroeconomic variables.
2We model imperfect information in the context of the Kalman filter.
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We then study rules that involve a weaker reaction to inflation and/or a stronger–weaker

reaction to output (relative to the standard, “V-G” Taylor rule). Within the class of

determinate equilibria we find that three elements are required in order for the model

to be successful: i) Very weak reaction to both inflation and output deviations from

trend. Namely, reaction coefficients in the Taylor rule that are in the neighborhood of

1 and 0 respectively; ii) A very large — negative — productivity shock (of the order

of 10%-15%). And iii) substantial imperfect information about the output gap. Under

these conditions the model generates a large, persistent, increase in inflation that is

comparable to that experienced in the 70s. And it also succeeds in generating overall

macroeconomic volatility that matches well that observed in the data.

We have also experimented with HMT rule specifications that lead to indeterminacy (of

the type suggested by Clarida, Gali and Gerler, 2000). The results differ depending on

the location of the sunspot but, independent of the degree of imperfect information, the

model always fared worse relative to the determinate case with weak response to both

inflation and output discussed above.

The rest of the paper is organized as follows. Section 1 presents the model. Section 2

discusses the calibration. Section 3 presents the main results. An appendix describes the

mechanics of the solution to the model under imperfect information and learning based

on the Kalman filter.

1 The model

The set up is the standard NNS model. The economy is populated by a large number of

identical infinitely–lived households and consists of two sectors: one producing interme-

diate goods and the other a final good. The intermediate good is produced with capital

and labor and the final good with intermediate goods. The final good is homogeneous

and can be used for consumption (private and public) and investment purposes.

1.1 The Household

Household preferences are characterized by the lifetime utility function:3

∞∑
τ=0

Etβ
τU

(
Ct+τ ,

Mt+τ

Pt+τ
, `t+τ

)
(1)

3Et(.) denotes mathematical conditional expectations. Expectations are conditional on information
available at the beginning of period t.
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where 0 < β < 1 is a constant discount factor, C denotes the domestic consumption

bundle, M/P is real balances and ` is the quantity of leisure enjoyed by the representative

household. The utility function,U
(
C, M

P , `
)

: R+ × R+ × [0, 1] −→ R is increasing and

concave in its arguments.

The household is subject to the following time constraint

`t + ht = 1 (2)

where h denotes hours worked. The total time endowment is normalized to unity.

In each and every period, the representative household faces a budget constraint of the

form

Bt+1 + Mt + Pt(Ct + It + Tt) ≤ Rt−1Bt + Mt−1 + Nt + Πt + PtWtht + PtztKt (3)

where Wt is the real wage; Pt is the nominal price of the domestic final good;.Ct is con-

sumption and I is investment expenditure; Kt is the amount of physical capital owned by

the household and leased to the firms at the real rental rate zt. Mt−1) is the amount of

money that the household brings into period t, and Mt is the end of period t money hold-

ings. Nt is a nominal lump–sum transfer received from the monetary authority; Tt is the

lump–sum taxes paid to the government and used to finance government consumption.

Capital accumulates according to the law of motion

Kt+1 = It − ϕ

2

(
It

Kt
− δ

)2

Kt + (1 − δ)Kt (4)

where δ ∈ [0, 1] denotes the rate of depreciation. The second term captures the existence

of capital adjustment costs. ϕ > 0 is the capital adjustment costs parameter.

The household determines her consumption/savings, money holdings and leisure plans

by maximizing her utility (1) subject to the time constraint (2), the budget constraint

(3) and taking the evolution of physical capital (4) into account.

1.2 Final sector

The final good is produced by combining intermediate goods. This process is described

by the following CES function

Yt =
(∫ 1

0
Xt(i)θdi

) 1
θ

(5)

where θ ∈ (−∞, 1). θ determines the elasticity of substitution between the various inputs.

The producers in this sector are assumed to behave competitively and to determine their
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demand for each good, Xt(i), i ∈ (0, 1) by maximizing the static profit equation

max
{Xt(i)}i∈(0,1)

PtYt −
∫ 1

0
Pt(i)Xt(i)di (6)

subject to (5), where Pt(i) denotes the price of intermediate good i. This yields demand

functions of the form:

Xt(i) =
(

Pt(i)
Pt

) 1
θ−1

Yt for i ∈ (0, 1) (7)

and the following general price index

Pt =
(∫ 1

0
Pt(i)

θ
θ−1 di

) θ−1
θ

(8)

The final good may be used for consumption — private or public — and investment

purposes.

1.3 Intermediate goods producers

Each firm i, i ∈ (0, 1), produces an intermediate good by means of capital and labor

according to a constant returns–to–scale technology, represented by the Cobb–Douglas

production function

Xt(i) = AtKt(i)αht(i)1−α with α ∈ (0, 1) (9)

where Kt(i) and ht(i) respectively denote the physical capital and the labor input used

by firm i in the production process. At is an exogenous stationary stochastic technology

shock, whose properties will be defined later. Assuming that each firm i operates under

perfect competition in the input markets, the firm determines its production plan so as

to minimize its total cost

min
{Kt(i),ht(i)}

PtWtht(i) + PtztKt(i)

subject to (9). This leads to the following expression for total costs:

PtStXt(i)

where the real marginal cost, S, is given by W 1−α
t zα

t
χAt

with χ = αα(1 − α)1−α

Intermediate goods producers are monopolistically competitive, and therefore set prices

for the good they produce. We follow Calvo, 1983, in assuming that firms set their

6



prices for a stochastic number of periods. In each and every period, a firm either gets

the chance to adjust its price (an event occurring with probability γ) or it does not. In

order to maintain long term money neutrality (in the absence of monetary frictions) we

also assume that the price set by the firm grows at the steady state rate of inflation.

Hence, if a firm i does not reset its price, the latter is given by Pt(i) = πPt−1(i). A firm

i sets its price, p̃t(i), in period t in order to maximize its discounted profit flow:

max
p̃t(i)

Π̃t(i) + Et

∞∑
τ=1

Φt+τ (1 − γ)τ−1
(
γΠ̃t+τ (i) + (1 − γ)Πt+τ (i)

)
subject to the total demand it faces

Xt(i) =
(

Pt(i)
Pt

) 1
θ−1

Yt

and where Π̃t+τ (i) = (p̃t+τ (i)−Pt+τSt+τ )X(i, st+τ ) is the profit attained when the price

is reset, while Πt+τ (i) = (πτ p̃t(i)−Pt+τSt+τ )Xt+τ (i) is the profit attained when the price

is maintained. Φt+τ is an appropriate discount factor related to the way the household

values future as opposed to current consumption. This leads to the price setting equation

p̃t(i) =
1
θ

Et

∞∑
τ=0

[
(1 − γ)π

1
θ−1

]τ
Φt+τP

2−θ
1−θ

t+τ St+τYt+τ

Et

∞∑
τ=0

[
(1 − γ)π

θ
θ−1

]τ
Φt+τP

1
θ−1

t+τ Yt+τ

(10)

Since the price setting scheme is independent of any firm specific characteristic, all firms

that reset their prices will choose the same price.

In each period, a fraction γ of contracts ends, so there are γ(1 − γ) contracts surviving

from period t − 1, and therefore γ(1 − γ)j from period t − j. Hence, from (8), the

aggregate intermediate price index is given by

Pt =

( ∞∑
i=0

γ(1 − γ)i

(
p̃t−i

πi

) θ
θ−1

) θ−1
θ

(11)

1.4 The monetary authorities

We assume that monetary policy is conducted according to a standard HMT rule.

Namely,

R̂t = ρR̂t−1 + (1 − ρ)[kπEt(π̂t+1 − π) + ky(ŷt − y?
t )]

where π̂t and ŷt are actual output and expected inflation respectively and π and y?
t are

the inflation and output targets respectively. The output target is set equal to potential
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output and the inflation target to the steady state rate of inflation. Potential output

is not observable and the monetary authorities learn about shocks to it gradually. The

learning process is described in the appendix4.

There exists disagreement in the literature regarding the empirically relevant values of kπ

and ky for the 1970s. Clarida, Gali and Gertler, 2000, claim that the pre–Volcker, HMT

monetary rule involved a policy response to inflation that was too weak. Namely, that

kπ < 1 which led to real indeterminacies and excessive inflation. The estimate the triplet

{ρ, kπ, ky} = {0.75, 0.8, 0.4}. Orphanides, 2001, disputes this claim. He argues that the

reaction to — expected — inflation was broadly similar in the pre and post–Volcker

period, but the reaction to output was stronger in the earlier period. In particular, using

real time date, he estimates {ρ, kπ, ky} = {0.75, 1.6, 0.6}

We investigate the consequences of using alternative values for kπ and ky in order to shed

some light on the role of policy preferences relative to that of the degree of imperfect

information for the behavior of inflation.

1.5 The government

The government finances government expenditure on the domestic final good using lump

sum taxes. The stationary component of government expenditures is assumed to follow

an exogenous stochastic process, whose properties will be defined later.

1.6 The equilibrium

We now turn to the description of the equilibrium of the economy.

Definition 1 An equilibrium of this economy is a sequence of prices {Pt}∞t=0 = {Wt, zt, Pt, Rt,

Pt(i), i ∈ (0, 1)}∞t=0 and a sequence of quantities {Qt}∞t=0 = {{QH
t }∞t=0, {QF

t }∞t=0} with

{QH
t }∞t=0 = {Ct, It, Bt, Kt+1, ht, Mt}

{QH
t }∞t=0 = {Yt, Xt(i), Kt(i), ht(i); i ∈ (0, 1)}∞t=0

such that:

(i) given a sequence of prices {Pt}∞t=0 and a sequence of shocks, {QH
t }∞t=0 is a solution

to the representative household’s problem;
4See Ehrmann and Smets, 2003, for a discussion of optimal monetary policy in a related model.
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(ii) given a sequence of prices {Pt}∞t=0 and a sequence of shocks, {QF
t }∞t=0 is a solution

to the representative firms’ problem;

(iii) given a sequence of quantities {Qt}∞t=0 and a sequence of shocks, {Pt}∞t=0 clears the

markets

Yt = Ct + It + Gt (12)

ht =
∫ 1

0
ht(i)di (13)

Kt =
∫ 1

0
Kt(i)di (14)

Gt = Tt (15)

and the money market.

(iv) Prices satisfy (10) and (11).

2 Parametrization

The model is parameterized on US quarterly data for the period 1960:1–1999:4. The

data are taken from the Federal Reserve Database.5 The parameters are reported in

table 1.

β, the discount factor is set such that households discount the future at a 4% annual

rate, implying β equals 0.988. The instantaneous utility function takes the form

U

(
Ct,

Mt

Pt
, `t

)
=

1
1 − σ

((
Cη

t + ζ
Mt

Pt

η) ν
η

`1−ν
t

)1−σ

− 1


where ζ capture the preference for money holdings of the household. σ, the coefficient

ruling risk aversion, is set equal to 1.5. ν is set such that the model generates a total

fraction of time devoted to market activities of 31%. η is borrowed from Chari et al.

(2000), who estimated it on postwar US data (-1.56). The value of ζ, 0.0649, is selected

such that the model mimics the average ratio of M1 money to nominal consumption

expenditures.

γ, the probability of price resetting is set in the benchmark case at 0.25, implying that

the average length of price contracts is about 4 quarters. The nominal growth of the

economy, µ, is set such that the average quarterly rate of inflation over the period is

π = 1.2% per quarter. The quarterly depreciation rate, δ, was set equal to 0.025. θ in
5URL: http://research.stlouisfed.org/fred/
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Table 1: Calibration: Benchmark case

Preferences
Discount factor β 0.988
Relative risk aversion σ 1.500
Parameter of CES in utility function η -1.560
Weight of money in the utility function ζ 0.065
CES weight in utility function ν 0.344

Technology
Capital elasticity of intermediate output α 0.281
Capital adjustment costs parameter ϕ 1.000
Depreciation rate δ 0.025
Parameter of markup θ 0.850
Probability of price resetting γ 0.250

Shocks and policy parameters
Persistence of technology shock ρa 0.950
Standard deviation of technology shock σa 0.008
Persistence of government spending shock ρg 0.970
Volatility of government spending shock σg 0.020
Goverment share g/y 0.200
Nominal growth µ 1.012

the benchmark case is set such that the level of markup in the steady state is 15%. α,

the elasticity of the production function to physical capital, is set such that the model

reproduces the US labor share — defined as the ratio of labor compensation over GDP

— over the sample period (0.575).

The evolution of technology is assumed to contain two components. One capturing de-

terministic growth and the other stochastic growth. The stochastic one, at = log(At/A)

is assumed to follow a stationary AR(1) process of the form

at = ρaat−1 + εa,t

with |ρa| < 1 and εa,t Ã N (0, σ2
a). We set ρa = 0.95 and6 σa = 0.008.

Alternative descriptions of the productivity process may be equally plausible. For in-

stance, productivity growth may have followed a deterministic trend that permanently

shifted downward in the late 60s to early 70s. In our model, this would mean that the

FED learns about the trend in productivity rather than about the current level of the

— temporary — shock to productivity. We are unsure about how our results would be
6There is a non-negligible change in the volatility of the Solow residual between the pre and the post

Volcker period. That up to 1979:4 is 0.0084 while that after 1980:1 is 0.0062. For the evaluation of the
model it is the former period that is relevant. Note that for the government spending shock the difference
between the two periods is negligible.
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affected by using an alternative process, but, given the state of the art in this area, we

do not think that it is possible to identify the productivity process with any degree of

confidence.

The government spending shock7 is assumed to follow an AR(1) process

log(gt) = ρg log(gt−1) + (1 − ρg) log(g) + εg,t

with |ρg| < 1 and εg,t ∼ N (0, σ2
g). The persistence parameter is set to, ρg, of 0.97 and

the standard deviation of innovations is σg = 0.02. The government spending to output

ratio is set to 0.20.

An important feature of our analysis is that potential output is imperfectly observed by

the agents. In other word, it may be written as

y?
t = yp

t + ξt

where yp
t denotes the true potential output and ξt a noisy process that satisfies:

i) E(ξt) = 0 for all t;

ii) E(ξtεa,t) = E(ξtεg,t) = 0;

iii) and

E(ξtξk) =
{

σ2
ξ if t = k

0 Otherwise

In order to facilitate the interpretation of σξ we set its value in relation to the volatility

of the technology shock. More precisely, we define ς as ς = σξ/σa. Several values are

then assigned to ς to gauge the effects of imperfect information in the model.

3 The results

The model is first log–linearized around the deterministic steady state and then solved

according to the method outlined in the appendix.

We start by assuming a standard specification for the HMT rule, namely, ρ = 0.75,

kπ = 1.5 and ky = 0.5 and vary the degree of uncertainty — the quality of the signal

— about potential output8. The objective of this exercise is to determine i) whether
7The –logarithm of the– government expenditure series is first detrended using a linear trend.
8To be more precise, we vary the size of ς.
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a policy reaction function of the type commonly attributed to the FED during the 80s

and 90s would have prevented the occurrence of high and persistent inflation of the type

observed in the 70s; and ii) the role played by imperfect information in this. This exercise

may then prove useful for determining whether the great inflation was mainly the result

of bad luck and incomplete information or of inflation bias — the element emphasized by

Ireland, 1999 — or insufficiently aggressive reaction to inflation developments — a low

kπ, as emphasized by Clarida, Gerler and Gali, 2000. Orphanides, 2001, has defended

FED policy during the 70s along these lines by arguing that the FED’s reaction to

inflation did not differ significantly between the pre and post Volcker era.

We report two sets of statistics. The volatility of H-P filtered actual output, inflation

and investment. And the impulse response functions (IRF) of actual output and inflation

following a negative technology shock for the perfect information model (Perf. Info.),

the imperfect information model with ς = 1 (Imp. Info. (I)) and ς = 10 (Imp. Info.

(II)). The IRF for the inflation rate is annualized and expressed in percentage points. To

find the actual rate of inflation following a shock we need to add the response reported

in the IRF to the steady state value (which is 4.8%).

There exists considerable uncertainty about the (type and) size of the shock that trig-

gered the productivity slowdown of the 70s. We do not take a position on this. We

proceed by selecting a value for the supply shock that can generate a large and persis-

tent increase in the inflation rate. By large, we mean an increase in the inflation rate

of the order of 5-6 percentage points (so that the maximum rate of inflation obtained

during that period is about 10%-11%). We then feed a series of shocks that include this

value into our model and generate the other statistics described above.

Figure 1, Panel A shows that the model can produce a large and persistent increase in

the inflation rate if two conditions are met: The shock is very large (of the order of

30%). And the degree of imperfect information is very high (say, ς = 10). Imperfect

information is critical because it increases the persistence of inflation while leading to

a smoother output path. Moreover, table 2 indicates that the maximum and minimum

effects on output and inflation following such a shock are plausible. But the model fails,

though, in generating a realistic degree of macroeconomic volatility. In particular, table

3 shows that the model significantly under-predicts volatility.

Increasing the degree of degree of price flexibility (say, from q = 0.25 to q = 1/3 does

not help much. The size of the required supply shock decreases (from 30% to 20%) and

volatility increases somewhat but not sufficiently (table 3, panel B). We have run a larger

number of experiments involving the same HMT rule and alternative values of the other
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parameters of the model without managing to improve overall model performance.

We then turned to alternative specifications of the policy rule. Figure 2 and tables 4-5

report the most successful specification encountered (within the range of determinate

equilibria). It involves a weak reaction to inflation kπ = 1.01, passive policy ky = 0.01,

somewhat more flexible prices, q = 1/3, (an average length of price contracts of about

3 quarters, which is closer to the estimate of Bils and Klenow, 2002), a high degree of

imperfect information (ς = 10) and a substantial negative productivity shock (15%).

Under this parametrization, the model can generate a large and persistence increase in

inflation following the productivity slowdown and also macroeconomic volatility that is

close to that observed during the sample period.

Figure 1: IRF to a negative technology shock: ((ρ, κπ, κy)=(0.75,1.50,0.50))

Panel A: q=0.25, -30% shock
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Table 2: Impact and extreme effect of a technology shock ((ρ, κπ, κy)=(0.75,1.50,0.50))

Perf. Info Imp. Info (I) Imp. Info (II)
q=0.25, -30% Shock

Output -32.195 -32.195 -3.559 -16.532 1.263 -1.028
Inflation 0.240 1.102 4.481 4.481 5.214 5.214

q=1/3, -20% Shock
Output -21.526 -21.526 -5.717 -14.373 0.601 -2.210

Inflation -0.107 0.828 4.770 4.770 6.793 6.793

Note: Perfect information, Imperfect information (I) and Imperfect infor-
mation (II) correspond to ς=0,1,10 respectively, where ς is the amount of
noise.

Table 3: Standard Deviations ((ρ, κπ, κy)=(0.75,1.50,0.50))

σy σi σπ

Data 1.639 7.271 0.778
q=0.25, -30% Shock

Perf. Info. 2.982 10.675 0.072
Imp. Info. (I) 1.576 5.671 0.409

Imp. Info. (II) 0.376 2.160 0.487
q=1/3, -20% Shock

Perf. Info. 2.275 8.117 0.076
Imp. Info. (I) 1.675 6.012 0.514

Imp. Info. (II) 0.548 2.203 0.742

Note: The standard deviations are computed for HP–filtered series. y, i
and π are output, investment and inflation respectively. Perfect informa-
tion, Imperfect information I and Imperfect information II correspond to
ς=0,1,10 respectively where ς is the amount of noise.

Figure 2: IRF to a negative technology shock: ((ρ, κπ, κy)=(0.75,1.01,0.01),q=1/3)
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Table 4: Impact and extreme effect of a technology shock ((ρ, κπ, κy)=(0.75,1.01,0.01))

Perf. Info Imp. Info (I) Imp. Info (II)
q=1/3, -15% Shock

Output 24.440 -13.349 10.132 -10.188 1.960 -1.479
Inflation 15.517 15.517 9.079 9.079 5.595 5.595

Table 5: Standard Deviations ((ρ, κπ, κy)=(0.75,1.01,0.01))

σy σi σπ

Data 1.639 7.271 0.778
q=1/3, -15% Shock

Perf. Info. 3.597 15.186 1.467
Imp. Info. (I) 2.906 11.972 1.248

Imp. Info. (II) 1.533 6.178 0.850

Note: The standard deviations are computed for HP–filtered series. y, i
and π are output, investment and inflation respectively.

We have also investigated the properties of the model under the policy rule parametriza-

tion suggested by Clarida et al. Namely, ρ = 0.75, κπ = 0.80, κy = 0.40. This rule

leads to an indeterminant equilibrium. We have experimented with different assump-

tions about the source of the indeterminacy (the location of the sunspot). The most

satisfactory results obtain when the sunspot is placed on the marginal utility of con-

sumption. But while the model in this case can easily generate a sufficiently large and

persistent effect on inflation even with a much smaller technology shock (see Figures

3, the associated response of output and macroeconomic volatilities are not plausible,

independent of the degree of imperfect information. In particular, volatility is very large

even when the variance of the sunspot is negligible(see Tables 6-7).

4 Conclusions

Inflation in the US reached high levels during the 1970s, due to a large extent to what

proved to be excessively loose monetary policy. There exist several views concerning

the conduct of policy at that time. One views it as an honest mistake on the part

of a monetary authority whose tolerance of inflation did not differ significantly from

that commonly attributed to the authorities in the 80s and 90s. According to this

view (Orphanides, 2001), the large decrease in actual output following the persistent

downward shift in potential output was interpreted as a decrease in the output gap.
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It led to expansionary monetary policy that exaggerated the inflationary impact of the

decrease in potential output. Eventually and after a long delay, the FED realized that

potential output growth was lower and adjusted policy to bring inflation down. Imperfect

information rather than tolerance of inflation played the critical role in the inflation

process.

Another leading view is that the FED’s reaction rule exhibited a weak response towards

inflation (relative to the Volcker–Greenspan (V–G) era) and perhaps more policy activism

(Clarida, Gali and Gertler, 2001). The implication of this view is that adoption of

the standard (under V–G) Henderson- McKibbin-Taylor rule would have prevented the

persistent surge in inflation.

Our findings offer qualified support to the latter view but, at the same time, suggest

that the informational problems emphasized by Orphanides may have played an impor-

tant role. If the reaction to expected inflation is sufficiently large then no matter how

large imperfect information may be, the model cannot generate a path of inflation that

resembles that actually observed during the seventies and at the same time satisfy other

fitness criteria. In contrast, were one to accept that the shock that triggered the great

inflation were indeed very substantial, a HMT rule with weak reaction to both inflation

and output and a great deal of imperfect information could generate behavior that is

much more consistent with the data. Interestingly, the reaction to inflation should not

be so weak as to lead to indeterminacy. In particular, the model performs very poorly

under a monetary policy specification that gives rise to indeterminacies.
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5 Appendix

The solution of the model under imperfect information with a Kalman
filter

Let’s consider the following system

MccYt = Mcs

(
Xb

t

Xf
t

)
+ Mce

(
Xb

t|t
Xf

t|t

)
(16)

Mss0

(
Xb

t+1

Xf
t+1|t

)
+Mss1

(
Xb

t

Xf
t

)
+Mse1

(
Xb

t|t
Xf

t|t

)
= Msc0Yt+1|t+Msc1Yt+

(
Meut+1

0

)
(17)

St = C0

(
Xb

t

Xf
t

)
+ C1

(
Xb

t|t
Xf

t|t

)
+ vt (18)

Y is a vector of ny control variables, S is a vector of ns signals used by the agents to

form expectations, Xb is a vector of nb predetermined (backward looking) state variables

(including shocks to fundamentals), Xf is a vector of nf forward looking state variables,

finally u and v are two Gaussian white noise processes with variance–covariance matrices

Σuu and Σvv respectively and E(uv′) = 0. Xt+i|t = E(Xt+i|It) for i > 0 and where It

denotes the information set available to the agents at the beginning of period t.

Before solving the system, note that, from (16), we have

Yt = B0

(
Xb

t

Xf
t

)
+ B1

(
Xb

t|t
Xf

t|t

)
(19)

where B0 = M−1
cc Mcs and B1 = M−1

cc Mce, such that

Yt|t = B

(
Xb

t|t
Xf

t|t

)
(20)

with B = B0 + B1.

5.1 Solving the system

Step 1: We first solve for the expected system:

Mss0

(
Xb

t+1|t
Xf

t+1|t

)
+ (Mss1 + Mse1)

(
Xb

t|t
Xf

t|t

)
= Msc0Yt+1|t + Msc1Yt|t (21)
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Plugging (20) in (21), we get (
Xb

t+1|t
Xf

t+1|t

)
= W

(
Xb

t|t
Xf

t|t

)
(22)

where

W = − (Mss0 − Msc0B)−1 (Mss1 + Mse1 − Msc1B)

After getting the Jordan form associated to (22) and applying standard methods for

eliminating bubbles, we get

Xf
t|t = GXb

t|t

From which we get

Xb
t+1|t = (Wbb + WbfG)Xb

t|t = W bXb
t|t (23)

Xf
t+1|t = (Wfb + WffG)Xb

t|t = W fXb
t|t (24)

Step 2: We go back to the initial system to get and write

Then, (17) rewrites

Mss0

(
Xb

t+1

Xf
t+1|t

)
+ Mss1

(
Xb

t

Xf
t

)
+ Mse1

(
Xb

t|t
Xf

t|t

)
= Msc0B

(
Xb

t+1|t
Xf

t+1|t

)
+ Msc1B

0

(
Xb

t

Xf
t

)

+Msc1B
1

(
Xb

t|t
Xf

t|t

)
+

(
Meut+1

0

)
Taking expectations, we have

Mss0

(
Xb

t+1|t
Xf

t+1|t

)
+ Mss1

(
Xb

t|t
Xf

t|t

)
+ Mse1

(
Xb

t|t
Xf

t|t

)
= Msc0B

(
Xb

t+1|t
Xf

t+1|t

)
+ Msc1B

0

(
Xb

t|t
Xf

t|t

)

+Msc1B
1

(
Xb

t|t
Xf

t|t

)
Subtracting, we get

Mss0

(
Xb

t+1 − Xb
t+1|t

0

)
+Mss1

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
= Msc1B

0

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
+

(
Meut+1

0

)
(25)

which rewrites(
Xb

t+1 − Xb
t+1|t

0

)
= W c

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
+ M−1

ss0

(
Meut+1

0

)
(26)

where, W c = −M−1
ss0(Mss1 −Msc1B

0). Hence, considering the second block of the above

matrix equation, we get

W c
fb(X

b
t − Xb

t|t) + W c
ff (Xf

t − Xf
t|t) = 0
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which gives

Xf
t = F 0Xb

t + F 1Xb
t|t

with F 0 = −W c
ff

−1W c
fb and F 1 = G − F 0.

Now considering the first block we have

Xb
t+1 = Xb

t+1|t + W c
bb(X

b
t − Xb

t|t) + W c
bf (Xf

t − Xf
t|t) + M2ut+1

from which we get using (23)

Xb
t+1 = M0Xb

t + M1Xb
t|t + M2ut+1

with M0 = W c
bb + W c

bfF 0, M1 = W b − M0 and M2 = M−1
ss0Me.

We also have

St = C0
b Xb

t + C0
t Xf

t + C1
b Xb

t|t + C1
fXf

t|t + vt

from which we get

St = S0Xb
t + S1Xb

t|t + vt

where S0 = C0
b + C0

fF 0 and S1 = C1
b + C0

fF 1 + C1
fG

Finally, we get

Yt = B0
b Xb

t + B0
t Xf

t + B1
b Xb

t|t + B1
fXf

t|t

from which we get

Yt = Π0Xb
t + Π1Xb

t|t

where Π0 = B0
b + B0

fF 0 and Π1 = B1
b + B0

fF 1 + B1
fG

5.2 Filtering

Since our solution involves terms in Xb
t|t, we would like to compute this quantity. How-

ever, the only information we can exploit is a signal St that we described previously. We

therefore use a Kalman filter approach to compute the optimal prediction of Xb
t|t.

In order to recover the Kalman filter, it is a good idea to think in terms of expectational

errors. Therefore, let us define

X̂b
t = Xb

t − Xb
t|t−1

and

Ŝt = St − St|t−1
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Note that since St depends on Xb
t|t, only the signal relying on S̃t = St − S1Xb

t|t can be

used to infer anything on Xb
t|t. Therefore, the policy maker revises its expectations using

a linear rule depending on S̃e
t = St − S1Xb

t|t. The filtering equation then writes

Xb
t|t = Xb

t|t−1 + K(S̃e
t − S̃e

t|t−1) = Xb
t|t−1 + K(S0X̂b

t + vt)

where K is the filter gain matrix, that we would like to compute.

The first thing we have to do is to rewrite the system in terms of state–space represen-

tation. Since St|t−1 = (S0 + S1)Xb
t|t−1, we have

Ŝt = S0(Xb
t − Xb

t|t) + S1(Xb
t|t − Xb

t|t−1) + vt

= S0X̂b
t + S1K(S0X̂b

t + vt) + vt

= S?X̂b
t + νt

where S? = (I + S1K)S0 and νt = (I + S1K)vt.

Now, consider the law of motion of backward state variables, we get

X̂b
t+1 = M0(Xb

t − Xb
t|t) + M2ut+1

= M0(Xb
t − Xb

t|t−1 − Xb
t|t + Xb

t|t−1) + M2ut+1

= M0X̂b
t − M0(Xb

t|t + Xb
t|t−1) + M2ut+1

= M0X̂b
t − M0K(S0X̂b

t + vt) + M2ut+1

= M?X̂b
t + ωt+1

where M? = M0(I − KS0) and ωt+1 = M2ut+1 − M0Kvt.

We therefore end–up with the following state–space representation

X̂b
t+1 = M?X̂b

t + ωt+1 (27)

Ŝt = S?X̂b
t + νt (28)

For which the Kalman filter is given by

X̂b
t|t = X̂b

t|t−1 + PS?′(S?PS?′ + Σνν)−1(S?X̂b
t + νt)

But since X̂b
t|t is an expectation error, it is not correlated with the information set in

t − 1, such that X̂b
t|t−1 = 0. The prediction formula for X̂b

t|t therefore reduces to

X̂b
t|t = PS?′(S?PS?′ + Σνν)−1(S?X̂b

t + νt) (29)

where P solves

P = M?PM?′ + Σωω
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and Σνν = (I + S1K)Σvv(I + S1K)′ and Σωω = M0KΣvvK
′M0′ + M2ΣuuM2′

Note however that the above solution is obtained for a given K matrix that remains to

be computed. We can do that by using the basic equation of the Kalman filter:

Xb
t|t = Xb

t|t−1 + K(S̃e
t − S̃e

t|t−1)

= Xb
t|t−1 + K(St − S1Xb

t|t − (St|t−1 − S1Xb
t|t−1))

= Xb
t|t−1 + K(St − S1Xb

t|t − S0Xb
t|t−1)

Solving for Xb
t|t, we get

Xb
t|t = (I + KS1)−1(Xb

t|t−1 + K(St − S0Xb
t|t−1))

= (I + KS1)−1(Xb
t|t−1 + KS1Xb

t|t−1 − KS1Xb
t|t−1 + K(St − S0Xb

t|t−1))

= (I + KS1)−1(I + KS1)Xb
t|t−1 + (I + KS1)−1K(St − (S0 + S1)Xb

t|t−1))

= Xb
t|t−1 + (I + KS1)−1KŜt

= Xb
t|t−1 + K(I + S1K)−1Ŝt

= Xb
t|t−1 + K(I + S1K)−1(S?X̂b

t + νt)

where we made use of the identity (I + KS1)−1K ≡ K(I + S1K)−1. Hence, identifying

to (29), we have

K(I + S1K)−1 = PS?′(S?PS?′ + Σνν)−1

remembering that S? = (I + S1K)S0 and Σνν = (I + S1K)Σvv(I + S1K)′, we have

K(I+S1K)−1 = PS0′(I+S1K)′((I+S1K)S0PS0′(I+S1K)′+(I+S1K)Σvv(I+S1K)′)−1(I+S1K)S0

which rewrites as

K(I + S1K)−1 = PS0′(I + S1K)′
[
(I + S1K)(S0PS0′ + Σvv)(I + S1K)′

]−1

K(I + S1K)−1 = PS0′(I + S1K)′(I + S1K)′−1(S0PS0′ + Σvv)−1(I + S1K)−1

Hence, we obtain

K = PS0′(S0PS0′ + Σvv)−1 (30)

Now, recall that

P = M?PM?′ + Σωω

Remembering that M? = M0(I + KS0) and Σωω = M0KΣvvK
′M0′ + M2ΣuuM2′, we

have

P = M0(I − KS0)P
[
M0(I − KS0)

]′ + M0KΣvvK
′M0′ + M2ΣuuM2′

= M0
[
(I − KS0)P (I − S0′K ′) + KΣvvK

′
]
M0′ + M2ΣuuM2′
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Plugging the definition of K in the latter equation, we obtain

P = M0
[
P − PS0′(S0PS0′ + Σvv)−1S0P

]
M0′ + M2ΣuuM2′ (31)

5.3 Summary

We finally end–up with the system of equations:

Xb
t+1 = M0Xb

t + M1Xb
t|t + M2ut+1 (32)

St = S0
b Xb

t + S1
b Xb

t|t + vt (33)

Yt = Π0
bX

b
t + Π1

bX
b
t|t (34)

Xf
t = F 0Xb

t + F 1Xb
t|t (35)

Xb
t|t = Xb

t|t−1 + K(S0(Xb
t − Xb

t|t−1) + vt) (36)

Xb
t+1|t = (M0 + M1)Xb

t|t (37)

which describe the dynamics of our economy.
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Figure 3: IRF to a negative -5% technology shock: ( (ρ, κπ, κy)=(0.75,0.80,0.40))
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Table 6: Impact and extreme effect of a technology shock ((ρ, κπ, κy)=(0.75,0.80,0.40)

Perf. Info Imp. Info (I) Imp. Info (II)

Output 9.690 -4.148 5.529 -3.032 3.715 -1.993
Inflation 7.504 7.504 4.588 4.588 3.406 3.679

Table 7: Standard Deviations ((ρ, κπ, κy)=(0.75,1.01,0.01))

σy σi σπ

q=1/3, -15% Shock
(ρ, κπ, κy)=(0.75,0.80,0.40)

Perf. Info. 2.956 11.908 1.607
Imp. Info. (I) 4.283 18.733 2.195

Imp. Info. (II) 18.635 85.925 8.951

Note: The standard deviations are computed
for HP–filtered series. y, i and π are output,
investment and inflation respectively.
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